Efficient inversion of the Galerkin matrix of general second-order elliptic operators with nonsmooth coefficients

نویسنده

  • Mario Bebendorf
چکیده

This article deals with the efficient (approximate) inversion of finite element stiffness matrices of general second-order elliptic operators with L∞-coefficients. It will be shown that the inverse stiffness matrix can be approximated by hierarchical matrices (H-matrices). Furthermore, numerical results will demonstrate that it is possible to compute an approximate inverse with almost linear complexity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The spectral properties of differential operators with matrix coefficients on elliptic systems with boundary conditions

Let $$(Lv)(t)=sum^{n} _{i,j=1} (-1)^{j} d_{j} left( s^{2alpha}(t) b_{ij}(t) mu(t) d_{i}v(t)right),$$ be a non-selfadjoint differential operator on the Hilbert space $L_{2}(Omega)$ with Dirichlet-type boundary conditions. In continuing of papers [10-12], let the conditions made on the operator $ L$ be sufficiently more general than [11] and [12] as defined in Section $1$. In this paper, we estim...

متن کامل

A Meyers type regularity result for approximations of second order elliptic operators by Galerkin schemes

We prove a Meyers type regularity estimate for approximate solutions of second order elliptic equations obtained by Galerkin methods. The proofs rely on interpolation results for Sobolev spaces on graphs. Estimates for second order elliptic operators on rather general graphs are also obtained.

متن کامل

Discontinuous Galerkin Finite Element Approximation of Hamilton--Jacobi--Bellman Equations with Cordes Coefficients | SIAM Journal on Numerical Analysis | Vol. 52, No. 2 | Society for Industrial and Applied Mathematics

We propose an hp-version discontinuous Galerkin finite element method for fully nonlinear second-order elliptic Hamilton–Jacobi–Bellman equations with Cordes coefficients. The method is proved to be consistent and stable, with convergence rates that are optimal with respect to mesh size, and suboptimal in the polynomial degree by only half an order. Numerical experiments on problems with nonsmo...

متن کامل

Enhanced Cell-Centered Finite Differences for Elliptic Equations on General Geometry

We present an expanded mixed finite element method for solving second-order elliptic partial differential equations on geometrically general domains. For the lowest-order Raviart–Thomas approximating spaces, we use quadrature rules to reduce the method to cell-centered finite differences, possibly enhanced with some face-centered pressures. This substantially reduces the computational complexit...

متن کامل

Krein Resolvent Formulas for Elliptic Boundary Problems in Nonsmooth Domains

The paper reports on a recent construction ofM -functions and Krĕın resolvent formulas for general closed extensions of an adjoint pair, and their implementation to boundary value problems for second-order strongly elliptic operators on smooth domains. The results are then extended to domains with C Hölder smoothness, by use of a recently developed calculus of pseudodifferential boundary operat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Math. Comput.

دوره 74  شماره 

صفحات  -

تاریخ انتشار 2005